ORGANIC COMPOUNDS

Acta Cryst. (1994). C50, 1465-1467

An Octafluoronaphthalene:Indene (1:2) Adduct

Ivan Leban, Nataša Zupančič, Ljubo Golič and Boris Šket

Department of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, POB 537, 61001 Ljubljana, Slovenia

(Received 21 December 1993; accepted 28 February 1994)

Abstract

The structure contains discrete molecules of the 1:2 adduct of octafluoronaphthalene with indene: $(4b\alpha,4c\alpha,8b\beta,8c\beta,13b\beta,13c\beta,13d\alpha,13e\alpha)-4c,5,6,7,8,-8b,13c,13d-octafluoro-4b,4c,8b,8c,9,13b,13c,13d,13e,-14-decahydrobis(indeno[1',2':3,4]cyclobuta)[1,2-a:1',2'-c]naphthalene [$ *Chem. Abstr.*(1992).**116**, 3468*f*]. The bond lengths and angles are normal for this type of compound and there are no unusual close intermolecular contacts in the structure.

Comment

The present structure determination is one in a series of investigations of fluoroorganic compounds prepared in the Department of Chemistry and Chemical Technology, University of Ljubljana, Slovenia (Golič & Leban, 1978*a*,*b*, 1980*a*,*b*, 1981). The compound (Fig. 1)† is the result of the photochemical reaction between octafluoronaphthalene and indene (Zupančič & Šket, 1992). It was obtained from the initially formed [2+2] *endo* adduct, which has a *cis* orientation of the H atoms in the cyclobutane ring, by an *exo* attack from the second indene molecule to the double bond in the dihydronapthalene derivative, resulting in a *trans* orientation of the H atoms. All distances are generally as expected.

† It should be noted that the numbering scheme used differs from the numbering scheme in *Chemical Abstracts*.

Fig. 1. ORTEP (Johnson, 1965) view of the molecule with that atomic numbering scheme. Displacement ellipsoids are plotted at the 30% probability level.

Fig. 2. The unit cell.

Experimental

Crystal data $C_{28}H_{16}F_8$ $M_r = 504.41$ Triclinic $P\overline{1}$ a = 7.546 (1) Å b = 9.629 (1) Å c = 15.876 (2) Å $\alpha = 83.16 (1)^{\circ}$ $\beta = 81.17 (1)^{\circ}$ $\gamma = 71.23 (1)^{\circ}$ $V = 1076.3 (2) Å^3$ Z = 2 $D_x = 1.556 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation $\lambda = 0.7107$ Å Cell parameters from 25 reflections $\theta = 10-13^{\circ}$ $\mu = 0.138$ mm⁻¹ T = 293 (2) K Transparent prisms $0.62 \times 0.54 \times 0.08$ mm Colourless

©1994 International Union of Crystallography Printed in Great Britain – all rights reserved

$C_{28}H_{16}F_8$

Data collection				Table 2	. Selected geom	etric parameters	(Å, °)
Enraf–Nonius CAD-4	h = -	-9 → 9		F1—C1	1.392 (2)	C10-C23	1.544 (2)
diffractometer	k = -	$-12 \rightarrow 12$		F2—C2	1.379 (2)	C11—C19	1.508 (3)
Variable rate w/2A scans	$\frac{1}{2} = -20 \rightarrow 20$		F4—C4	1.341 (2)	C11—C12	1.537 (2)	
11 072 measured reflect	Valiable falls $l = -20 \rightarrow 20$		F5—C5	1.335 (2)	C12—C13	1.557 (2)	
11 972 measured reflect	11 9/2 measured reflections 3 standard reflections		500	F6—C6	1.342 (2)	C13-C14	1.507 (2)
5166 independent reflec	tions mo	onitored every	500	F7—C7	1.344 (2)	C14—C15	1.390 (3)
3165 observed reflection	15	reflections		F9-C9	1.394 (2)	C14 - C19	1.392 (3)
$[I > 2\sigma(I)]$	fre	quency: 180 n	nin	FI0-CI0	1.390 (2)	C15 - C10	1.381(3) 1.377(3)
$R_{\rm int} = 0.0224$ intensity variation: 1.2%		$C_1 = C_1 $	1.499 (2)	C10-C17	1 376 (3)		
$A = 27.97^{\circ}$			C1 - C12	1.550 (2)	C18-C19	1.391 (3)	
$v_{\text{max}} = 27.97$				$C_2 - C_3$	1.505 (2)	C21-C29	1.506 (3)
				C2-C13	1.544 (2)	C21-C22	1.523 (3)
				C3C4	1.389 (2)	C22—C23	1.556 (3)
Refinement				C3—C8	1.397 (2)	C23—C24	1.505 (3)
Refinement on F^2	$\Delta \rho_{\rm m}$	= 0.283 e Å	-3	C4—C5	1.372 (3)	C24—C25	1.386 (3)
$R[F^2 > 2\sigma(F^2)] = 0.040$	$\overline{\Delta}_{0}$	= -0.231 e	Å−3	C5—C6	1.374 (3)	C24—C29	1.391 (3)
$R[F^2] = 0.1055$	DI L pm Everi	n = 0.251 c	21	C6C7	1.365 (3)	C25—C26	1.383 (3)
WR(F) = 0.1033	EXII)11. 1.1.::-1-	C7C8	1.395 (3)	$C_{20} - C_{27}$	1.383 (3)
S = 1.110	SE	ELXL93 (Sne	larick,	$C_8 - C_9$	1.508 (2)	$C_{2}/-C_{28}$	1.380 (3)
5166 reflections	19	93)		C_{2}	1.549 (3)	C20-C29	1.565 (5)
342 parameters	Extir	ction coefficie	ent:	C) C12	1.549 (2)	<u> </u>	100 7 (0)
Only H-atom U's refine	d 0.0	0143 (25)		F1 - C1 - C10	108.37 (14)	CI-CI0-C23	122.7(2)
Calculated weights	Aton	nic scattering	factors	FI = CI = CZ	110.25 (13)	r_{10}	108.94 (14)
$1/[-2/(E^2)] + (0.07)$	$(1D)^2$ from	m Internation	al Tables	$E_1 - C_1 - C_1^2$	110.08 (13)	$C_{1} = C_{1} = C_{2}$	80 15 (13)
$w = 1/[\sigma^{-}(F_{o}) + (0.0/11P)^{-}]$ for Cruster		r Crystalloara	$nh_{\rm W}$ (1007	C10-C1-C12	118.97 (14)	$C_{23} - C_{10} - C_{12}$	103.59 (14)
+0.1142P	JUI	Crystatiogra	268 and	C2-C1-C12	88.71 (12)	C11_C12_C1	116.79 (15)
where $P = (F_o^2 + 2F_c^2)/3$ Vol. C, Tables 4.2.6.8 and		.2.6.8 and	F2-C2-C3	109.14 (13)	C11-C12-C13	107.59 (14)	
$(\Delta/\sigma)_{\rm max} = -0.060$ 6.1.1.4)			F2-C2-C13	115.87 (12)	C1-C12-C13	88.97 (12)	
·				C3—C2—C13	111.65 (13)	C14—C13—C2	116.91 (13)
				F2-C2-C1	115.31 (13)	C14—C13—C12	103.34 (14)
				C3—C2—C1	114.32 (13)	C2-C13-C12	88.73 (12)
Table 1. Fractional atomic coordinates and equivalent			C13 - C2 - C1	89.57 (12)	C15-C14-C19	120.7 (2)	
isotronic displacement nonemeters $(\overset{1}{\lambda}^2)$			$C_4 - C_3 - C_8$	118.2(2) 117.53(14)	C13 - C14 - C13	128.1(2) 11117(15)	
isotropic disp	nucemeni pu	iumeters (A)	C_{4}	17.33 (14)	C16-C15-C14	1187(13)
$U = (1/3) \sum \sum J U \cdot a^* a^* a \cdot a \cdot$				F4	117 5 (2)		120.8(2)
C eq = (1/ <i>5)</i> 2/2/0/04	uj u(.uj.		F4-C4-C3	119.69 (15)	C18-C17-C16	120.8 (2)
x	у	Z	U_{eq}	C5-C4-C3	122.7 (2)	C17-C18-C19	119.5 (2)
F1 0.75049 (15)	0.10821 (11)	0.67969 (7)	0.0525 (3)	F5-C5-C4	120.9 (2)	C18-C19-C14	119.5 (2)
F2 0.38010 (14)	0.18913 (10)	0.67246 (6)	0.0456 (3)	F5-C5-C6	120.4 (2)	C18-C19-C11	128.6 (2)
F4 0.09840 (15)	0.44915 (13)	0.63055 (7)	0.0557 (3)	C4—C5—C6	118.7 (2)	C14-C19-C11	111.83 (15)
F5 = -0.1566 (2)	0.66943 (15)	0.71277 (9)	0.0698 (4)	F6—C6—C7	119.9 (2)	C29-C21-C22	103.4 (2)
F6 = -0.07/1 (2)	0.75598(15)	0.83001 (9)	0.0815(4)	F6-C6-C5	120.1 (2)	C21—C22—C9	119.9 (2)
F7 = 0.2344 (2) F9 = 0.6177 (2)	0.02327 (14) 0.52155 (14)	0.91328(7) 0.83326(7)	0.0087(4)	C7—C6—C5	119.9 (2)	C21—C22—C23	107.8 (2)
$F_{10} = 0.0177 (2)$	0.32133(14) 0.2871(2)	0.77937 (7)	0.0040 (3)	F/	117.7 (2)	C9 - C22 - C23	88.56 (13)
C1 0.6591 (2)	0.2544 (2)	0.69662 (11)	0.0406 (4)	r/	120.2(2) 1221(2)	C_{24} C_{23} C_{10} C_{24} C_{23} C_{23}	119.04 (14)
C2 0.4540 (2)	0.3023 (2)	0.67439 (10)	0.0353 (3)	C_{7}	122.1 (2)	$C_{24} - C_{23} - C_{22}$	89.74 (14)
C3 0.3165 (2)	0.4179 (2)	0.72845 (9)	0.0353 (3)	C7 - C8 - C9	118.61 (15)	C_{15} C_{25} C_{24} C_{29}	120.4 (2)
C4 0.1408 (2)	0.4882 (2)	0.70138 (10)	0.0412 (4)	C3-C8-C9	123.0 (2)	C25-C24-C23	128.7 (2)
C5 0.0081 (3)	0.6012 (2)	0.74264 (12)	0.0489 (4)	F9-C9-C8	107.25 (15)	C29-C24-C23	110.8 (2)

F9-C9-C10

C8---C9---C10

F9-C9-C22

119.2 (2) 120.0 (2) 118.25 (15) C8-C9-C22 C27-C28-C29 89.47 (14) C28-C29-C24 C10-C9-C22 C28-C29-C21 128.0 (2) F10-C10-C1 107.32 (14) F10-C10-C23 108.54 (14) C24-C29-C21 111.9 (2) All H atoms were located in the difference map and included in the refinement at calculated positions with individual isotropic displacement parameters. A single crystal was sealed in a glass capillary and the space group determined from intensity statistics. Intensity data were collected with a maximum scan time of 60 s and a scan width of $(0.7 + 0.3 \tan \theta)^{\circ}$; background was measured for 1/4 of the scan time at each scan limit. Data were corrected for intensity variation and Lp effects, but absorption was ignored as a result of the small linear absorption coefficient. The initial structure model was refined by full-

112.84 (14)

115.11 (13)

113.34 (13)

C26-C25-C24

C27-C26-C25

C28-C27-C26

119.4 (2)

119.9 (2)

121.0 (2)

matrix least squares. All calculations performed on the VAX 8550 cluster at University Computer Centre, Ljubljana, under

	x	у	Z	U_{eq}
F1	0.75049 (15)	0.10821 (11)	0.67969 (7)	0.0525 (3)
F2	0.38010 (14)	0.18913 (10)	0.67246 (6)	0.0456 (3)
F4	0.09840 (15)	0.44915 (13)	0.63055 (7)	0.0557 (3)
F5	-0.1566 (2)	0.66943 (15)	0.71277 (9)	0.0698 (4)
F6	-0.0771 (2)	0.75598 (15)	0.85601 (9)	0.0815 (4)
F7	0.2544 (2)	0.62527 (14)	0.91328 (7)	0.0687 (4)
F9	0.6177 (2)	0.52155 (14)	0.83326 (7)	0.0640 (3)
F10	0.8708 (2)	0.2871 (2)	0.77937 (7)	0.0657 (3)
C1	0.6591 (2)	0.2544 (2)	0.69662 (11)	0.0406 (4)
C2	0.4540 (2)	0.3023 (2)	0.67439 (10)	0.0353 (3)
C3	0.3165 (2)	0.4179 (2)	0.72845 (9)	0.0353 (3)
C4	0.1408 (2)	0.4882 (2)	0.70138 (10)	0.0412 (4)
C5	0.0081 (3)	0.6012 (2)	0.74264 (12)	0.0489 (4)
C6	0.0496 (3)	0.6456 (2)	0.81436 (12)	0.0527 (5)
C7	0.2204 (3)	0.5778 (2)	0.84300 (11)	0.0487 (4)
C8	0.3583 (2)	0.4647 (2)	0.80093 (10)	0.0393 (4)
C9	0.5484 (3)	0.4038 (2)	0.83298 (11)	0.0454 (4)
C10	0.6899 (2)	0.2749 (2)	0.78478 (11)	0.0449 (4)
C11	0.8698 (3)	0.2925 (2)	0.55299 (11)	0.0501 (4)
C12	0.7054 (2)	0.3601 (2)	0.62095 (10)	0.0425 (4)
C13	0.5191 (2)	0.3695 (2)	0.58656 (10)	0.0381 (4)
C14	0.5854 (3)	0.2696 (2)	0.51427 (10)	0.0414 (4)
C15	0.4768 (3)	0.2228 (2)	0.46743 (12)	0.0527 (5)
C16	0.5663 (4)	0.1349 (3)	0.40117 (14)	0.0672 (6)
C17	0.7595 (4)	0.0942 (3)	0.38158 (13)	0.0689 (6)
C18	0.8678 (3)	0.1401 (2)	0.42773 (12)	0.0605 (5)
C19	0.7807 (3)	0.2288 (2)	0.49475 (11)	0.0458 (4)
C21	0.3882 (3)	0.2798 (3)	0.96921 (11)	0.0607 (5)
C22	0.5648 (3)	0.3034 (2)	0.91714 (11)	0.0555 (5)
C23	0.6615 (3)	0.1687 (2)	0.86284 (11)	0.0502 (5)
C24	0.5101 (3)	0.0968 (2)	0.86700 (11)	0.0454 (4)
C25	0.5116 (3)	-0.0206 (2)	0.82386 (12)	0.0542 (5)
C26	0.3581 (3)	-0.0729 (2)	0.83912 (14)	0.0630 (6)
C27	0.2047 (3)	-0.0074 (3)	0.8965 (2)	0.0683 (6)
C28	0.2023 (3)	0.1094 (3)	0.93984 (14)	0.0640 (6)
C29	0.3564 (3)	0.1608 (2)	0.92563 (11)	0.0503 (5)

VMS 5.2. Data reduction: *NRCVAX* (Gabe, Le Page, Charland, Lee & White, 1989). Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1985). Program(s) used to refine structure: *SHELXI.*93 (Sheldrick, 1993). Molecular graphics: *ORTEP* (Johnson, 1965). Software used to prepare material for publication: *SHELXL*93.

Financial support from the Ministry for Science and Technology, Republic of Slovenia, is gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1075). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Golič, L. & Leban, I. (1978a). Cryst. Struct. Commun. 7, 47-52.
- Golič, L. & Leban, I. (1978b). Cryst. Struct. Commun. 7, 53-57.
- Golič, L. & Leban, I. (1980a). Acta Cryst. B36, 1520-1522.
- Golič, L. & Leban, I. (1980b). Cryst. Struct. Commun. 9, 739-744.
- Golič, L. & Leban, I. (1981). Cryst. Struct. Commun. 10, 221-226.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Mallinson, P. R. & Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of
- Crystal Structures. Univ. of Göttingen, Germany. Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure
- Refinement. Univ. of Göttingen, Germany.
- Zupančič, N. & Šket, B. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 179–180.

Acta Cryst. (1994). C50, 1467-1469

A Novel Dioxabicyclo[3.3.1]nonane, a Key Intermediate in the Synthesis of Erythronolide B *seco*-Acid

VINCENT M. LYNCH, WEN-CHERNG LEE, STEPHEN F. MARTIN AND BRIAN E. DAVIS

Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA

(Received 17 September 1992; accepted 18 November 1993)

Abstract

In the title compound, (1R,4S,5R,6R,8R)-1-ethyl-4,6,8-trimethyl-2,9-dioxabicyclo[3.3.1]nonan-6-yl 1-imidazolecarboxylate, $C_{16}H_{24}N_2O_4$, the 2,9-dioxabicyclo-

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved [3.3.1]nonane ring system assumes a double-chair conformation. Bond angles around the ring are enlarged compared to normal tetrahedral values to alleviate some of the overcrowding which results from close intramolecular $H \cdots H$ and $C \cdots C$ contacts. The *N*imidazolylcarbonyloxy group is nearly planar with dihedral angles of 5.2 (2) and 6.0 (2)° between the imidazole and carbonyl groups for molecules 1 and 2, respectively.

Comment

The title compound, (II), was synthesized by refluxing 1-ethyl-4,6,8-trimethyl-2,9-dioxabicyclo[3.3.1]nonan-6ol, (I), with 1,1'-carbonyldiimidazole in benzene (Martin, Pacofsky, Gist & Lee, 1989). The crystal structure determination of (II) was undertaken as part of a project aimed at the total syntheses of erythromycins A and B utilizing novel synthetic strategies (Martin *et al.*, 1989).

There are two independent molecules in the asymmetric unit. They will be referred to as molecule 1 and molecule 2. Atoms of molecule 2 have labels appended with a prime. There are no significant differences in geometry or conformation between the two molecules. The dioxabicyclo[3.3.1]nonane ring system is found to have a double-chair conformation. This conformation results in the close proximity of the H atoms in the 3a and 7a positions. Constraining the bond lengths and angles to idealized values for bicyclo[3.3.1]nonane would result in the distance between these H atoms being 0.76 Å (Peters, Baas, van de Graaf, van der Toorn & van Bekkum, 1978). In the present case, the distances are 1.96(5) and 1.98(4) Å for molecules 1 and 2, respectively. The molecule adjusts to minimize these close contacts by expanding the appropriate angles at atoms around the ring system. In the present example, angles C4-C5-C6 and C1-O2-C3 are enlarged significantly. The angle at C4-C5-C6 is 121.9(3) and 122.3 (3)° for molecules 1 and 2, respectively, while C1-O2-C3 is 116.8 (2) and 117.6 (3)°, respectively. Although the double-chair is the usual conformation for such a molecule lacking bulky groups at the 3a and/or the 7a positions (Peters et al., 1978), the presence of axial Me groups at C6 and C8 was expected to force the ring into a chair-boat conformation. The C13---C14 contacts are the same for both molecules [3.356 (6) Å for molecule 1, 3.355 (5) Å for molecule 2]. Even though